Synthesen von Heterocyclen, 119. Mitt.:

Über Reaktionen des Salicylsäurechlorids mit aromatischen Thioamiden

Von

G. Kollenz, Th. Kappe und E. Ziegler

Aus dem Institut für Organische und Pharmazeutische Chemie der Universität Graz

(Eingegangen am 29. Juni 1968)

Salicylsäurechlorid (1) reagiert mit aromatischen Thioamiden unter HCl- und $\rm H_2S$ -Abspaltung zu 4H-1,3-Benzoxazinonen (2—5), welche mit verd. HCl zu N-Acylsalicylsäureamiden (6—9) gespalten werden.

Salicyloyl chloride (1) reacts with aromatic thioamides to 4H-1.3-benzoxazinones (2—5), which can be hydrolized with dil. HCl yielding N-acyl-salicyloyl-amides (6—9).

E. Ziegler und Mitarb. 1-4 haben in einer Reihe von Mitteilungen gezeigt, daß Salicylsäurechlorid (1) sich an C=O- bzw. C=N-Doppelbindungssysteme unter Verlust von HCl addieren kann. Dabei entstehen Verbindungen der Benzdioxan- bzw. Benzoxazin-Reihe.

Wir haben nun die Möglichkeit untersucht, 1 in analoger Weise an Nitrile zu addieren. Als Reaktionsprodukte wären hier 4*H*-1,3-Benzoxazinone zu erwarten gewesen. Tatsächlich lassen sich aber Nitrile weder mit noch ohne Katalysator in diesem Sinne mit 1 zur Reaktion bringen. Aromatische Thioamide, die sich bei manchen Umsetzungen wie "aktive Nitrile" verhalten, geben jedoch auch mit Salicylsäurechlorid (1) in siedendem Benzol bzw. Xylol unter HCl- und H₂S-Abspaltung in einigen Fällen die gewünschten 4*H*-1,3-Benzoxazin-4-one.

¹ E. Ziegler und H. D. Hanus, Mh. Chem. **96**, 411 (1965).

² E. Ziegler und H. D. Hanus, Mh. Chem. 95, 1054 (1964).

³ E. Ziegler, G. Kollenz und Th. Kappe, Mh. Chem. 99, 804 (1968).

⁴ E. Ziegler, Th. Kappe und G. Kollenz, Mh. Chem. 116. Mitt.

Aliphatische Thioamide liefern keine definierten Produkte, aber auch gewisse aromatische Thioamide, wie 3,4,5-Trimethoxybenzoesäure- und 1-Naphthoesäure-thioamid, gehen unter den erwähnten Versuchsbedingungen lediglich in die entsprechenden Nitrile über, die dann nicht weiterreagieren.

Für den Reaktionsablauf ist anzunehmen, daß 1 zunächst acylierend am N-Atom der Thioamid-Gruppe angreift und anschließend unter HClsowie $\rm H_2S$ -Abspaltung Ringschluß zum Benzoxazin-Derivat eintritt. Auf Grund des freiwerdenden HCl scheint die Möglichkeit einer vorgelagerten, primären S-Acylierung mit anschließender $\rm S \rightarrow N$ -Umacylierung nicht gegeben, da nach Goerdeler und Horstmann beine solche durch Salzbildung am Imidstickstoff blockiert ist.

Tabelle 1.

$ m R_1$	$ m R_2$	2-Aryl-1,3- benzoxazin-4-on		N-Acylsalicyl- säureamid	
			Ausb., % d. Th.		Ausb., % d. Th.
$egin{array}{c} H & Cl & \\ CH_3 & OCH(CH_3)_2 & \end{array}$	$_{ m CH_3}^{ m H}$	2 3 4 5	40 30 52 32	6 7 8 9	80 88 92 93

2-Phenyl-4*H*-1,3-benzoxazin-4-on (2) ist bereits von *Titherley*⁶ sowohl aus dem N- als auch aus dem O-Benzoylsalicylsäureamid durch Dehydratisierung synthetisiert worden. Das aus Thiobenzamid und Salicylsäure-

⁵ J. Goerdeler und H. Horstmann, Chem. Ber. 93, 663 (1960).

⁶ A. W. Thitherley, J. Chem. Soc. [London] **97**, 200 (1910).

chlorid (1) erhaltene Produkt erweist sich als vollkommen identisch mit diesem, womit auch die Strukturen der Verbindungen 3—5 als 1,3-Benzoxazin-4-one gesichert erscheinen.

Ferner ist die Hydrolyse der Benzoxazin-4-one 2—5 mit verd. HCl für die angenommenen Strukturen beweisend. Sie führt in durchschnittlich 80—90proz. Ausbeute zu den entsprechenden offenkettigen N-Acylsalicylsäureamiden 6—9. Das so gewonnene N-Benzoyl-salicylsäureamid (6) zeigt völlige Identität mit einem nach Einhorn und Schupp⁷ synthetisierten Präparat.

Die vorliegende Arbeit wurde mit Unterstützung der J. R. Geigy AG, Basel, durchgeführt, für die wir danken.

Experimenteller Teil

1. 2-Phenyl-4H-1,3-benzoxazin-4-on (2)

Man erhitzt 2,8 g Thiobenzamid mit 3,12 g Salieylsäurechlorid (1) in Xylol $2\frac{1}{2}$ Stdn. zum Sieden, bis die HCl- und H₂S-Entwicklung beendet ist. Nach Abkühlen auf 20° wird rasch mit einem Überschuß an 3proz. NaOH durchgeschüttelt, mit H₂O nachgewaschen und die Xylolphase über Na₂SO₄ getrocknet. Beim Abdampfen des Xylols hinterbleibt eine ölige Masse, die nach Anreiben mit Petroläther kristallisiert. Aus Cyclohexan farbl. Prismen, Schmp. $100-102^{\circ}$; Ausb. 1,3 g (40% d. Th.).

Ein Mischschmp, mit der nach *Titherley*⁶ synthetisierten Verbindung zeigt keine Depression.

2. 2-p-Chlorphenyl-4H-1,3-benzoxazin-4-on (3)

Unter analogen Bedingungen bilden sich aus 2,4 g p-Chlorthiobenzamid und 3,12 g 1 1,3 g (30% d. Th.) 3. Dieses fällt nach Entfernen des Lösungsmittels kristallin an und läßt sich aus Cyclohexan reinigen. Farbl. Prismen, Schmp. 171—173°.

C₁₄H₈CINO₂. Ber. Cl 13,76. Gef. Cl 13,59.

3. 2-(3,4-Dimethylphenyl)-4H-1,3-benzoxazin-4-on (4)

3,3 g 3,4-Dimethylthiobenzamid und 3,12 g Salicylsäurechlorid (1) geben nach 1stdg. Erhitzen in Benzol 4 in einer Ausb. von 2,5 g (52% d. Th.). Nach Umkristallisieren aus Äthanol liegt der Schmp. bei 198—200°.

 $\label{eq:conditional_condition} {\rm C}_{16}{\rm H}_{13}{\rm NO}_2. \quad {\rm Ber.} \ {\rm C}\ 76,48,\ {\rm H}\ 5,22. \quad {\rm Gef.}\ {\rm C}\ 76,59,\ {\rm H}\ 5,39.$

4. 2-p-Isopropoxyphenyl-4H-1,3-benzoxazin-4-on (5)

Die Reaktion von 3,9 g p-Isopropoxy-thiobenzamid mit 3,12 g Salicylsäurechlorid (1) wird analog durchgeführt. Aus Cyclohexan erhält man in einer Ausb. von 1,8 g (32% d. Th.) farbl. Prismen, Schmp. 130°.

C₁₇H₁₅NO₃. Ber. C 72,58, H 5,38. Gef. C 72,71, H 5,43.

⁷ A. Einhorn und G. Schupp, Ber. dtsch. chem. Ges. 38, 2792 (1905).

5. N-Benzoyl-salicylsäureamid (6)

Die Lösung von 1 g 2-Phenyl-4H-1,3-benzoxazin-4-on (2) in 50 ml Äthanol, 10 ml H_2O und 1 ml konz. HCl wird 30 Min. erhitzt. Beim Abdestillieren des Äthanols fällt ein farbloser Niederschlag an. Aus Äthanol erhält man in einer Ausb. von 0.9 g (80% d. Th.) 6.

Schmp. und Mischschmp. mit der nach *Einhorn* und *Schupp*? hergestellten Verbindung liegen bei 200—202°.

6. N-p-Chlorbenzoyl-salicylsäureamid (7)

1 g 3 liefert analog 0,95 g (88% d. Th.) 7, Schmp. 226—228°.

 $C_{14}H_{10}ClNO_3$. Ber. Cl 12,86. Gef. Cl 12,87.

7. N-3,4-Dimethylbenzoyl-salicylsäureamid (8)

Man löst in 10 ml Äthanol 0,1 g 2-(3,4-Dimethylphenyl)-4H-1,3-benz-oxazin-4-on (4) und erhitzt nach Zugabe von 2 ml H_2O und 1 ml konz. HCl 30 Min. zum Sieden. Aus Äthanol farblose Nadeln, Schmp. 191°. Ausb. 0,1 g (92% d. Th.).

 $C_{16}H_{15}NO_3$. Ber. C 71,36, H 5,62. Gef. C 71,23, H 5,83.

8. N-p-Isopropoxybenzoyl-salicylsäureamid (9)

Die saure Hydrolyse von 0.5 g 2-(p-Isopropoxyphenyl)-4H-1.3-benzox-azin-4-on (5) verläuft analog. Aus Äthanol farbl. Nadeln, Schmp. 191—193°; Ausb. 0.5 g (93% d. Th.).

 $C_{17}H_{17}NO_4$. Ber. C 68,21, H 5,73. Gef. C 68,11, H 5,75.